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-4 high-temperature expansion of the magnetic susceptibility of atoms interacting with indirect spin-spin couplings is evalu- 
ated to third order in the coupling. These results are applicable to transition metal compounds which contain several transi- 
tion metal atoms. 

A. Introduction 
In recent years a large number of inorganic molecules 

have been synthesized which contain a number of tran- 
sition metal atoms. Many of these molecules contain 
only one transition metal in one oxidation state. If 
there is no orbital angular momentum, the Hamiltonian 
which is used to describe the behavior of these com- 
pounds in a magnetic field, H ,  is 

X = W + gpHS, (1) 

where g is the magnetogyric ratio of the electron, (3 the 
Bohr magneton, S, the total spin angular momentum 
parallel to  the magnetic field, and W the isotropic indi- 
rect spin-spin coupling.’ In  eq 2 the prime on a sum- 

mation indicates that  we are to sum over distinct i and 
j .  The coupling constants Ji,  depend on the bonding 
between atoms i and j .  

Studies of the magnetic susceptibility of the com- 
pounds as a function of temperature are one of the stan- 
dard methods of determining these coupling constants. 

In  many cases the eigenvalues and their degeneracies 
of this Hamiltonian can be written down from a knowl- 
edge of the rules for addition of angular momentum. 
From these results the susceptibility is readily obtained. 
This method has been widely  sed.^-^ In other cases 
the eigenvalue spectrum must be calculated using stan- 
dard techniques. If there is only a single nonvanishing 
J5 or the spin is low,6 there is little difficulty in finding 
the eigenvalue spectrum and the susceptibility. If 
there are a number of distinct nonvanishing J’s, these 
techniques become more cumbersome to apply since the 
eigenfunctions may depend on the ratio of the coupling 
constants. We have therefore used a high-temperature 
expansion technique which will work for the general 
case provided J i j / k T  is not too large. These high- 
temperature expansion techniques have been widely 
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used in the statistical mechanics of spin systems7i8 and 
have been used by Domb and Sykes to calculate the 
susceptibility of  crystal^.^ 

B. General Formulation of the Susceptibility 
The equivalent susceptibility, x,(H), of a molecule 

containigg n atoms of spin S which has a Hamiltonian 
given by eq 1 is 

xe(H)  = - N(b2E/dH2)/2n ( 3 )  

where N is Avogadro’s number and E is the average 
energy per molecule 

E = -b In 2ld-y (4) 

where 2 is the partition function and y = l / k T .  
given by 

2 is 

2 = T r  [exp( - y H )  ] 

exp ( - 7%) = exp ( - rgPffS,) exp ( - Y W )  

( 5 )  
Since W and S, commute, we can write 

If we are interested in the susceptibility for weak fields, 
we need only consider the first several terms in the ex- 
pansion of the last exponential 

2 = &.[I + yZg2p2H2 (SzZ),/2 + 
where 

y4g4p4H4 (Sz4),./4! + 8 * * ] (6) 

2, = Tr[exp(-yrW)] (7 ) 

(A),. = Tr(A) [ exp( -~W) l /Z ,~  (8) 

is the zero-field partition function. For any operator A 

is the zero-field average. 
that (Sz2z+1)w = 0. 
to 

We have made use of the fact 
Substitution into eq 3 and 4 leads 

x e ( H )  = X e  + Xe’‘HZ/2 + * . . (9) 

Xe = (Nyg2P/n) {(se2)w - Y [ ( w ~ z z ) w  - ( w > w ( ~ z z i w 1 / 2 )  

(10) 

with 

and 

Xe“ = (Ny3g4p4HZ/n) (4[(SZ4), - 3(Szz)w2] - 

y[(WSZ4),. - 6(WSz2)w(S12)w - (W)w(Sz4)w + 
6(W)w(Sa2)w21) (1 1) 
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TABLE I 
Xe/Nyg'P' FOR T W O  PARTICLES OF SPIN '/z [ w = -2JS1.Sz; HIGH-TEMPERATURE EXPANSION INCLUDING ( I /T)%- '  TERMS] 

7-- m-- 7 

J r  
0 
0.01 
0.03 
0.05 
0.1 
0.3 
0.5 
1 
3 
5 

-0.01 
-0.03 
-0.05 
-0.1 
-0.3 
-0.5 
-1 
-3 
-5 

Exact 

0.25000000 
0.25186247 
0.25551185 
0.25905971 
0.26748150 
0.29485727 
0.31313943 
0.33271227 
0.33388303 
0.33335350 
0.24811252 
0.24426326 
0.24031624 
0.23003405 
0.18386935 
0.13331216 
0,02779515 

-0,00486641 
-0.00018152 

1 

0.25000000 
0.25000000 
0.25000000 
0.25000000 
0.25000000 
0.25000000 
0.25000000 
0.25OOOOOO 
0.25000000 
0.25000000 
0.25000000 
0.25000000 
0.25000000 
0.25000000 
0.25000000 
0.25000000 
0.25000000 
0.25000000 
0.25000000 

Ordinarily only xe is important and we can ignore 
saturation effects. 

C. High-Temperature Expansion 
When the spin-spin interaction energy is small com- 

pared to kT, we can expand exp( - y W )  in a power se- 
ries and retain only the first several terms. Thermal 
averages may then be expressed in terms of averages 
taken assuming yW = 0 

(A) ,  = (A) ,  - r(WA)o + ( y 2 / 2 ) [ ( W 2 A ) o  - 
(W2)~(A)~1 - ( y a / 3  9 [(W3A)o - 3(W2)0 (WA)O - 

(W3)0 (Ah1 + . . . (12) 

(A)o = Tr(A)/@S -I- (13) 

where 

We have used the fact that (W), = 0 and we have 
obtained 

X e  = (Nyg2P2/n) { ( ~ s ~ ) o  - ( 3 ~ / 2 )  ( W S , ~ ) ~  + 
'Yz[(W2Sz2)~ - (W2)0(Sz2)01 - (Y3/12) [5(W3Sz2)0 - 

15(W2)o(wS~2)o - 5(W3)o(Sz2)01 f * * a 1 (14) 

and 

~ e "  = (Ny3g4B4/%) (4 [(SS4)o - 3(SZ2)o2 I - 57 [(WSZ4)o - 
6(WSzz)~(Sz2)~l + * . }  (15) 

The susceptibility is expressed in terms of the trace of 
operators of the type WmSZ2'. The calculation of these 
traces is sketched in the Appendix where the results are 
also tabulated. 

D. Results 
Table I lists Xe/Nyg2P2 as a function of J y  for two 

spin '/z atoms. The exact result and approximations 
using up to four terms in the high-temperature expan- 
sion are given. For I Jyl < 0.1 a linear relation in 1/T 
is sufficient for 0.570 accuracy. J is proportional to the 
slope. Quadratic deviations are sufficient for 1% accu- 

2 

0.25000000 
0.25187500 
0.25562500 
0.25937500 
0.26875000 
0.30625000 
0.34375000 
0.43750000 
0,81250000 
1.18750000 
0.24812500 
0.24437500 
0.24062500 
0.23125000 
0.19375000 
0.15625000 
0.06250000 

-0.31250000 
-0.68750000 

3 

0.25000000 
0.25186250 
0.25551250 
0.25906250 
0.26750000 
0.29500000 
0.31250000 
0.31250000 

-0.31250000 
-1.93750000 
0.24811250 
0.24426250 
0.24031250 
0.23000000 
0.18250000 
0.12500000 

-0.06250000 
-1.43750000 
-3.81250000 

4 

0.25000000 
0.25186248 
0.25551180 
0.25905925 
0.26747396 
0.29429688 
0.30924480 
0.28645834 

-1.01562482 
-5.19270750 
0.24811252 
0.24426320 
0.24031575 
0.23002604 
0.18320312 
0.12825520 

-0.03645834 
-0,73437518 
-0.55729250 

racy for IJyl < 0.5. The coefficient of the quadratic 
term is proportional to J 2 .  

For ferromagnetic coupling ( J  > 0) xeT has changed 
20y0 of the total change from its high-temperature to 
its low-temperature value for J y  = 0.1. For J y  = 0.5 
the change is i'5Y0. For the antiferromagnetic case 
( J  < 0) the change is 10 and 50% for J y  = -0.1 and 
- 0.5, respectively. 

Table 11 shows X,/Nyg2P2 for three spin '/2 atoms 
interacting with two equal coupling constants J and 
one unequal constant J' as a function of J y  and J ' y  for 
J' = J ,  J' = 0, and J' = - J .  Again deviations from 
linearity are small for 1 Jyl < 0.1 and from a quadratic 
relationship for 1 J y /  < 0.5. The limiting slope depends 
on (2 J + J ' ) / 3  which is the average coupling constant. 
The coefficient of the quadratic terms depends on prod- 
ucts of two coupling constants. If we can determine 
the limiting slope and the quadratic coefficients, we can 
determine J and J ' .  

For larger values of spin our linear and quadratic 
expressions will become inaccurate a t  smaller values of 
I Jyl because of the larger value of the energy levels. 
They will remain accurate for comparable changes in 
temperature times susceptibility. 

E. Conclusions 

Expressions have been given for temperature times 
susceptibility in a power series in 1/T. The intercept 
depends only on spin, the limiting slope depends on the 
average spin-spin coupling constant, and the quadratic 
term depends on an average of products of two coupling 
constants. From an experimental determination of 
slope and quadratic deviations, we are able to determine 
some averages of the coupling constants. If there are 
only two distinct ones, we can determine them. If 
there are more than two we can only put limits on them. 
These limits will prove helpful in trying to  fit the 
susceptibility using the exact quantum statistical 



46 Inorganic Chemistry, VoZ. 10, No. I, 1971 MARTIN I,. SAGE 

JY 

0 
0.01 
0.03 
0.05 
0.1 
0 . 3  
0 . 5  
1 
3 
5 

-0.01 
-0.03 
-0.05 
-0 .1  
-0.3 
-0 .5  
-1 
-3 
-5 

0.01 
0.03 
0.05 
0 .1  
0 .3  
0 . 5  
1 
3 
5 

-0.01 
-0.03 
-0.05 
-0.1 
-0 .3  
-0 .5  
-1 
-3 
-5 

0.01 
0.03 
0.05 
0 . 1  
0 . 3  
0 . 5  
1 
3 
5 

-0.01 
-0.03 
-0.05 
-0.1 
-0 .3  
-0.5 
-1 
-3 
-5 

J‘Y 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0.01 
0.03 
0.05 
0 . 1  
0 . 3  
0 . 5  
1 
3 

-0.01 
-0.03 
-0.05 
-0.1 
-0 .3  
-0 .5  
-1 
-3 
-5 
-0.01 
-0.03 
-0.05 
- 0 . 1  
-0 .3  
-0 .5  
-1 
-3 
-5 

0 

0.01 
0.03 
0.05 
0 .1  
0.3 
0.5 
1 
3 
5 

TABLE I1 
‘ rgZp2 FOR THREE PARTICLES OF SPIN ’/z [W = -2J(S1.S2 .t S1.S3) - 2J’Sz.S3; 

HIGH-TEMPERATURE EXPAXSION INCLUDIXG (l/T)nb-l T E R M S ]  - ~ - ~  
Exact 1 2 3 

0.25000000 0.25000000 0.25000000 0.25000000 
0.25249152 0.25000000 0.25250000 0.25249167 
0.25742137 0.25000000 0.25750000 0.25742500 
0.26227522 0.25000000 0.26250000 0.26229167 
0.27404263 0.25000000 0.27500000 0.27416667 
0.31494040 0.25000000 0.32500000 0.31750000 
0.34549135 0.25000000 0.37500000 0.35416667 
0.38857837 0.25000000 0.50000000 0.16666667 
0.42048693 0.25000000 1.00000000 0.25000000 
0.41833643 0.25000000 1.50000000 -0,58333333 
0,24749180 0.25000000 0.24750000 0.24749167 
0.24242886 0.25000000 0.24250000 0,24242500 
0.23730993 0.25000000 0.23750000 0.23729167 
0.22431958 0.25000000 0.22500000 0.22416667 
0.17222582 0.25000000 0.17500000 0.16750000 
0.12727411 0.25000000 0.12500000 0.10416667 
0.07299273 0.25000000 0.00000000 -0,08333333 
0.08304687 0.25000000 -0.50000000 -1.25000000 
0.08333192 0.25000000 -1.00000000 -3.08333333 
0.25374953 0.25000000 0.25375000 0.25375000 

0.26125000 0.26123736 0.25000000 
0.26869159 0.25000000 0.26875000 0.26875000 
0.28703708 0.25000000 0.28750000 0.28750000 
0.35114154 0.25000000 0.36250000 0.36250000 
0.39314476 0.25000000 0.43750000 0.43750000 
0.42344639 0.25000000 0.62500000 0.62500000 
0.41681059 0.25000000 1.37500000 1.37500000 
0.41666734 0.25000000 2.12500000 2.12500000 
0.24625046 0.25000000 0.24625000 0.24625000 
0.23876262 0.25000000 0.23875000 0.23875000 
0.23130839 0.25000000 0.23125000 0.23125000 
0.21296289 0.25000000 0.21250000 0.21250000 
0.14885844 0.25000000 0.13750000 0.13750000 
0.10685521 0.25000000 0.06250000 0.06250000 

-0,12500000 -0.12500000 0.07655362 0.25000000 
0.08318939 0.25000000 - 0,8$500000 - 0.87500000 
0.08333267 0.25000000 -1,62500000 -1.62500000 
0.25121664 0.25000000 0.25125000 0.25121667 
0.25344988 0.25000000 0.25375000 0.25345000 
0.25541722 0.25000000 0.25625000 0.25541667 
0.25919190 0.25000000 0.26250000 0.25916667 
0.25988451 0.25000000 0.28750000 0.25750000 
0.24462842 0.25000000 0.31250000 0.22916667 
0.18364103 0.25000000 0.37500000 0.04166667 
0.07234184 0.25000000 0.62500000 - 2.37500000 
0.07683231 0.25000000 0.87500000 -7,45833333 

0.24871667 0.24871668 0.25000000 0.24875000 
0.24595085 0.25000000 0.24625000 0.24595000 
0.24292181 0.25000000 0.24375000 0.24391667 
0.23423230 0.25000000 0.23750000 0.23416667 
0.18698327 0.25000000 0.21250000 0.18250000 
0.13479783 0.25000000 0.18750000 0,10416667 
0.07342773 0.25000000 0.12500000 -0.20833333 
0.08300441 0.25000000 -0.12500000 -3.12500000 
0.08333201 0.25000000 -0.37500000 -8.70833333 

0.26125000 

results since we have reduced the number of unknown 
parameters. 

The approximate treatment is applicable to situa- 
tions in which the exact. susceptibility cannot be calcu- 
lated which is the case for molecules containing several 
coupled atoms which have additional intermolecular 
couplings. 

Further work is in progress to determine how the 

4 

0.25000000 
0.25249514 
0.25742125 
0.26227431 
0.27402779 
0.31375000 
0.33680556 
0.02777778 

-- 3,50000000 
-17.94444444 

0.24749180 
0.24242875 
0.23730903 
0.22430555 
0.17125000 
0.12152778 
0.05555555 
2.50000000 

14.27777778 
0,25374953 
0.26123734 
0.26869140 
0.28703125 
0.34984374 
0.37890624 
0.15625000 

-11.28124988 
-56.46874943 

0.24625046 
0.23876265 
0.23130859 
0.21296875 
0.15015625 
0.12109375 
0.34375000 

11.78125000 
B6.96875000 
0.25121665 
0.25344954 
0.25541450 
0.25914931 
0.25703125 
0,22699654 
0.02430556 

-2.84375000 
-9.62847221 

0.24871668 
0.24595046 
0,24291884 
0.234 18403 
0.18296875 
0.10633680 

-0,19097222 
-2.65625000 
-6.53819445 

susceptibility changes with slight changes in some of the 
coupling constants. 

Appendix. Evaluation of (WmS,Zl)~ 
We shall illustrate our methods using (WZSz2)~  and 

merely tabulate the results for other terms. The types 
of expressions which occur in W2 are (SI * SZ) 2, (SI * SZ} . 
(5’1 * S3) ~ and (SI Sz) (S3 S4). All computations shall be 
done using a basis in which each SzI is diagonal. 
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(Sl.Sz)z can be multiplied by SlZ2, S3z2 ,  Sl2S2?., S l Z S 3 2 ,  

and S3zS4z. The last two terms will have vanishing 
expectation values as will all terms which are linear in a 
spin operator for one of the atoms. The first two are 
equal to S(S + 1)((S1.Sz)2)o/3 since ( ( S ~ . S Z ) ~ S ~ , ~ ) O  = 

In our basis the diagonal part of (SI ‘SZ)~ is 

S1z2Szz2 + (S1+Si-Sz-Sz+ + Si-Si+Sz+S2-)/4 = 

((S~*SZ)~S~,~)O = ((S~*Sz)~Siy~)o = ((S~’SZ)~S~~)O/~. 

S l Z 2 S Z Z 2  + [S*(S + 1 ) 2  - S(S + 1)(S1zZ + S2z2) + 
S l z 2 S 2 z 2  - S l Z S Z Z  1/2 

We now see 
((S~*SZ)~S~Z~)O = ( ( S ~ * S Z ) ~ & Z ~ ) O  = S3(S f l)’/g 

which could also be determined from symmetry con- 
siderations. The diagonal part of (S~.SZ)~ also allows 
us to determine 

((Sl~Sz)2Sl,Szz)o = -S2(S + 1)2/18 

The only remaining contributions from W2SS2 are from 

( (S~‘SZ)(S~’S~)S~ZS~~)O = ( ~ 1 z 2 ~ 2 z 2 ~ 3 z 2 )  = Sa(S + 1)3/27 
By similar considerations we find the results 
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Complexes of cobalt(II), nickel(II), zinc(II), and mercury(I1) with the ligands di(2-pyridyl) disulfide and 1,2-di(2’-pyridyl)- 
ethane are described. The cobalt complexes are tetrahedral, while tetrahedral, square-planar, and five-coordinate com- 
plexes of nickel are characterized. Utilization is made of electronic spectra, vibrational spectra (conventional and far- 
infrared), and magnetism in structural diagnosis. A detailed comparison of the bonding characteristics of the two closely 
related ligands is made. I t  is shown that in the five-coordinate complexes, the ligands span equatorial and axial sites. 
The sulfur atoms of the disulfide ligand are not involved in coordination except in the mercury complex. 

There has been extensive interest1 in the chemistry 
of ligands formed by the linkage of two pyridine resi- 
dues, in the ortho position, by various groups such as 
-CHz-, -NH-, -CH2NHCHz-, 420-, -S-, -CH=CH-, 
--SOT-, --CHzCHzXCHzCHz- (X = S, NH), -N=N-, 
etc. 

In most cases the bridging atom(s) is (are) not in- 
volved in coordination to the metal and the ligand 
behaves essentially as a sterically hindered 2-substituted 
pyridine. When coordination by the bridging group 
does occur, as for example with -CHZCHZSCHZCHZ-~ 
or with -N=N complexes of interesting stereochem- 
istry are obtained. 

* T o  whom correspondence should be addressed. 
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The complexing ability of di(2-pyridyl) disulfide (LS) 
was investigated in the hope that  this very simple ligand 
would give rise to five-coordinate complexes. This in 
fact it does although, surprisingly, the sulfur atoms are 
not involved. 

As a model for comparison purposes, the pyridine 
analog of ethylenediamine, 1,2-di(2’-pyridyl)ethane 
(LE) was also studied. 

Q N - N Q  

Q-SSQ Q - C H , C H , O  N 

LN 

LS LE 




